FLOOR TO FLOOR

Construction d'une Unité de valorisation de matières plastiques Salaise sur Sanne

N°33 - ANNEXE XVIII - Note de dimensionnement des ouvrages de rétention et d'infiltration

PREAMBULE SUR LE CALCUL DE RETENTION D'EAUX PLUVIALES

Le calcul de dimensionnement d'ouvrages de rétention des **eaux pluviales** est un calcul prédictif, comportant toujours des imprécisions. Ce dimensionnement s'appuie en partie sur les données fournies par le maître d'ouvrage. Les hypothèses et limites de ce calcul sont les suivantes :

Le site est attribué à un bassin versant unique et il est supposé que le site ne reprend pas d'eaux pluviales extérieures à son emprise. Le présent dimensionnement est établi uniquement pour la phase 1 du projet.

La période de retour choisie pour la protection de l'aménagement est une période de retour 30 ans. Cela signifie que les aménagements sont dimensionnés pour pouvoir gérer une pluie <u>ayant une probabilité d'apparition sur une année de 1 sur 30</u> (sans que pour autant il ne soit pas impossible d'observer deux fois de suite ce phénomène dans une année). Les aménagements seront donc la plupart du temps vides. Au-delà d'une pluie trentennale, des débordements pourront avoir lieu.

Le dimensionnement s'appuie les données contenues dans le rapport de mission G1 menée par **Hydro-Géotechnique (rapport C.16.51016 ind 1 daté du 19/09/2016)**, en particulier l'essai de perméabilité MATSUO réalisé au droit du sondage à la pelle mécanique PM5, point de sondage le plus proche de l'implantation envisagée pour le bassin de rétention/infiltration.

Le dimensionnement des ouvrages intègre une marge par rapport à cette mesure pour prendre en compte les remaniements liés au terrassement des ouvrages et le colmatage progressif du bassin qui amoindrissent la perméabilité.

Les calculs de volumes ruisselés sur les surfaces imperméabilisées s'appuient sur des données météorologiques qui ne sont que statistiques et que la réalité peut contredire.

La fiabilité des calculs donnés ne s'applique donc que dans la limite des hypothèses précitées.

L'imprécision du calcul des volumes de rétention des eaux pluviales, inhérente aux données auxquelles il se réfère, et qui ne peut être rendue nulle, devra inciter le maître d'ouvrage à prendre une légère marge par rapport aux valeurs calculées.

DIMENSIONNEMENT DES VOLUMES DE RETENTION DES EAUX PLUVIALES

Données météorologiques

Les données météorologiques utilisées ont été fournies par la station METEO France d'Albon (26), située à 10 km environ de Salaise sur Sanne.

Les coefficients de Montana sont estimés à partir des données pluviométriques de cette station, statistiques établies sur la période 2022-2018.

Période de retour	Coeff a	Coeff b	Coeff a	Coeff b
	(pluie 6mn à	(pluie 6mn à	(pluie 30mn à	(pluie 30mn à
	30 mn)	30 mn)	24h)	24h)
30 ans	4.561	0.377	10.999	0.648

Coefficients de ruissèlement

Les coefficients de ruissèlement retenus pour le dimensionnement sont :

1 pour les surfaces rendues étanches (toitures);

0,95 pour les voiries ou parkings ;

0,2 pour les espaces verts.

Ces coefficients signifient par exemple que lors d'une pluie :

Les surfaces de toiture restituent 100 % de l'eau ruisselée ;

Les espaces verts absorbent 80 % du flux ruisselé.

Surfaces imperméabilisées

La répartition des surfaces ainsi que les coefficients de ruissellement qui leur ont été associés permettent de calculer la surface active du projet :

Type de surface	Surface (m²)	Coefficient de Ruissellement	Surface Active (m²)
Toitures	12434	1	12434
Voirie et parkings	12421	0,95	11800
Espaces verts	7192	0,20	1438
TOTAL	32047	0,80	25672

Débit d'infiltration/fuite des ouvrages

Par sécurité, pour déterminer la surface d'infiltration, nous ne prendrons en compte que la base du bassin, sans intégrer la surface des parois.

L'essai de perméabilité MATSUO réalisé au droit du sondage à la pelle mécanique PM5, point de sondage le plus proche de l'implantation envisagée pour le bassin de rétention/infiltration, met en évidence une valeur de perméabilité K à 1,03 10⁻⁴ m/s, soit 370 l/m²/h.

Cet essai a été réalisé à une profondeur de 2,30m/TN sondage, soit 149,26 NGF.

La cote fond de fouille du bassin envisagé est de 148,00 NGF.

Considérant une surface d'infiltration envisagée de 2000 m² et une capacité d'absorption du sol de 370 l/m2/h, le débit d'infiltration est de 206 l/s.

Nous appliquerons un coefficient de sécurité minorateur de 0,50 pour intégrer l'incertitude des mesures de capacité d'absorption des sols et la réduction progressive de cette capacité d'absorption au fil du temps par colmatage.

Le débit d'infiltration/fuite minoré obtenu est ainsi de 103 l/s.

Volumes de rétention nécessaire

Le calcul est réalisé selon la **méthode des pluies**. Cette méthode considère différents évènements pluvieux (orage d'été à pluie longue d'hiver), et estime, selon le débit de fuite retenu et le volume ruisselé, le volume maximal à stocker pour la durée de pluie la plus pénalisante.

Volume de rétention nécessaire pour un événement trentennal

Surface totale :	А	32047	m²
Coeff.de ruissellement global	С	0,80	-
Surface active	Sa	2,5672	ha
Débit de fuite	Qs	0,103	m³/s
Débit spécifique de fuite	qs	0,241	mm/mn
Hauteur à stocker	hmax	32	mm
Volume à stocker	Vmax	827	m³

Le volume à stocker est de 827 m³. La pluie la plus pénalisante est une pluie de 75 mn. Le bassin sera totalement vidé en 480 mn.

Volume de rétention retenu

Le stockage d'un volume de 827 m³ sur 2000 m² implique une profondeur d'eau de 0,41 mètre. Par mesure de précaution vis-à-vis des approximations du calcul, et pour tenir compte d'un colmatage du bassin risquant de faire diminuer la perméabilité, une profondeur de 0,50 mètres est retenue, soit un volume construit de 1000 m³.

Considérant un taux de vide du bassin (type SAUL) de 96%, le volume utile construit sera de 960 m³. La marge de sécurité sur le volume de rétention est ainsi de 16 %.

Annexes

- Coefficient de Montana METEO France station d'Albon (26)
- Fiches de calculs
- Extraits du rapport de mission G1 d'Hydro géotechnique (rapport C.16.51016 ind 1 daté du 19/09/2016) : profil sondage PM5, rapport essais MATSUO sur PM5, plan de localisation essai PM5

COEFFICIENTS DE MONTANA

Formule des hauteurs

Statistiques sur la période 2002 - 2018

ALBON (26)

Indicatif: 26002003, alt: 153 m., lat: 45°15'08"N, lon: 4°49'20"E

La formule de Montana permet, de manière théorique, de relier une quantité de pluie h(t) recueillie au cours d'un épisode pluvieux avec sa durée t:

 $h(t) = a \times t^{(1-b)}$

Les quantités de pluie h(t) s'expriment en millimètres et les durées t en minutes.

Les coefficients de Montana (a,b) sont calculés par un ajustement statistique entre les durées et les quantités de pluie ayant une durée de retour donnée.

Cet ajustement est réalisé à partir des pas de temps (durées) disponibles entre 6 minutes et 30 minutes. Pour ces pas de temps, la taille de l'échantillon est au minimum de 16 années.

Coefficients de Montana pour des pluies de durée de 6 minutes à 30 minutes

Durée de retour	a	b
5 ans	3.961	0.448
10 ans	4.292	0.421
20 ans	4.5	0.394
30 ans	4.561	0.377
50 ans	4.622	0.356
100 ans	4.617	0.325

Page 1/1

Edité le : 28/04/2022

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Prédimensionnement bassin de retention Methodes des pluies

Ouvrages		Surface (m2)	Coeff.de ruisselement	Surface active (m2)	Durée de la pluie	Hauteur	Volume	Hauteur	Volume evacué	Hauteur à stocker	Volume à stocker	Durée de la pluie
	Toitures	12434	1,00	12434		ruisselée	ruisselé	evacuée		H ruiss-H evacuée		
	ries revetues	12421	0,95	11800								
Es	spaces verts	7192	0,20	1438								_
					5	12,43	319	1,2	31	11	288	5
					10	19,15	492	2,4	62	17	430	10
					15	24,65	633	3,6	93	21	540	15
					20	29,49	757	4,8	124	25	633	20
		20047	2.00	05070	25	33,88	870	6,0	155	28	715	25
Su	ırface totale	32047	0,80	25672	30	37,96	974	7,2	185	31	789	30
0. (25672	35	41,78	1073 1166	8,4	216	33	856 919	35
Surface active – Sa (m2)					40	45,41		9,6	247	36		40
Surface active – Sa (ha)				2,5672	45	48,87	1255	10,8	278	38	976	45
Surface totale projet – S(m2)			Zone 1	32047	50	52,18	1340	12,0	309	40	1031	50
Surface totale projet – S(ha)				3,2047	60	58,46	1501	14,4	371	44	1130	60
L.,		5			75	67,18	1725	18,1	464	49	1261	75
Débit rejet autorisé – q (l/s/ha)		Entre 2 et 20			90	75,26	1932	21,7	556	54	1376	90
Débit de fuite – $Qf = q*S(I/s)$				103	120	90,03	2311	28,9	742	61	1570	2
Débit de fuite – Qf (m3/s)				0,1030	150	103,46	2656	36,1	927	67	1729	2,5
					180	115,90	2976	43,3	1112	73	1863	3
Débit specifique de fuite/vidange – qs (n	ոm/mn)			0,241	210	127,59	3275	50,6	1298	77	1978	3,5
qs =Qf/Sa*6					240	138,65	3560	57,8	1483	81	2076	4
					360	178,50	4582	86,7	2225	92	2358	6
Lieu				Albon (26)	480	213,54	5482	115,5	2966	98	2516	8
Période de retour : T (ans)				30	540	229,80	5899	130,0	3337	100	2562	9
Coefficient de Montana (T) : a				4,561	600	245,39	6300	144,4	3708	101	2592	10
Coefficient de Montana (T) : b				0,377	720	274,90	7057	173,3	4450	102	2608	12
H ruisselée (T) = a*D^1-b					840	302,61	7769	202,2	5191	100	2578	14
					960	328,86	8443	231,1	5933	98	2510	16
Volume bassin retention (m3)				789	1080	353,90	9085	260,0	6674	94	2411	18
					1200	377,91	9702	288,9	7416	89	2286	20
					1320	401,03	10295	317,8	8158	83	2138	22
					1440	423,37	10869	346,6	8899	77	1970	24
Coefficient de Montana												
6mn-96h		Albon (26)										
2002-2018		pour T= 30 ans										
	a:	4,561										
	b:	0,377										
00 04		A II (00)										
30mn-24h		Albon (26)										
1987-2019		pour T= 30 ans										
	a:	10,999										
	b:	0,648										

COEFFICIENTS DE MONTANA

Formule des hauteurs

Statistiques sur la période 2002 - 2018

ALBON (26)

Indicatif: 26002003, alt: 153 m., lat: 45°15'08"N, lon: 4°49'20"E

La formule de Montana permet, de manière théorique, de relier une quantité de pluie h(t) recueillie au cours d'un épisode pluvieux avec sa durée t:

 $h(t) = a \times t^{(1-b)}$

Les quantités de pluie h(t) s'expriment en millimètres et les durées t en minutes.

Les coefficients de Montana (a,b) sont calculés par un ajustement statistique entre les durées et les quantités de pluie ayant une durée de retour donnée.

Cet ajustement est réalisé à partir des pas de temps (durées) disponibles entre 30 minutes et 24 heures. Pour ces pas de temps, la taille de l'échantillon est au minimum de 16 années.

Coefficients de Montana pour des pluies de durée de 30 minutes à 24 heures

Durée de retour	a	b
5 ans	7.548	0.654
10 ans	9.003	0.654
20 ans	10.298	0.651
30 ans	10.999	0.648
50 ans	11.765	0.643
100 ans	12.747	0.635

Page 1/1

Edité le : 28/04/2022

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Prédimensionnement bassin de retention Methodes des pluies

Ouvrages		Surface (m2)	Coeff.de ruisselement	Surface active (m2)	Durée de la pluie	Hauteur	Volume	Hauteur	Volume evacué	Hauteur à stocker	Volume à stocker	Durée de la pluie
	Toitures	12434	1,00	12434		ruisselée	ruisselé	evacuée		H ruiss-H evacuée		
•	Voiries revetues	12421	0,95	11800	mn	mm	m3	mm	m3	mm	m3	min ou h
	Espaces verts	7192	0,20	1438								
	_				5	19,38	498	1,2	31	18	467	5
					10	24,74	635	2,4	62	22	573	10
					15	28,53	732	3,6	93	25	640	15
					20	31,57	811	4,8	124	27	687	20
					25	34,15	877	6,0	155	28	722	25
	Surface totale	32047	0,80	25672	30	36,42	935	7,2	185	29	750	30
					35	38,45	987	8,4	216	30	771	35
Surface active - Sa (m2)				25672	40	40,30	1035	9,6	247	31	787	40
Surface active - Sa (ha)				2,5672	45	42,00	1078	10,8	278	31	800	45
Surface totale projet - S(m2)			Zone 1	32047	50	43,59	1119	12,0	309	32	810	50
Surface totale projet - S(ha)				3,2047	60	46,48	1193	14,4	371	32	822	60
				•	75	50,28	1291	18,1	464	32	827	75
Débit rejet autorisé – q (l/s/ha)		Entre 2 et 20			90	53,61	1376	21,7	556	32	820	90
Débit de fuite – Qf = q*S (l/s)				103	120	59,32	1523	28,9	742	30	781	2
Débit de fuite – Qf (m3/s)				0,1030	150	64,17	1647	36,1	927	28	720	2,5
,				,	180	68,42	1757	43,3	1112	25	644	3
Débit specifique de fuite/vidange - q	ıs (mm/mn)			0,241	210	72,24	1855	50,6	1298	22	557	3,5
qs =Qf/Sa*6	,- (-,	240	75,72	1944	57,8	1483	18	461	4
4					360	87,33	2242	86,7	2225	1	17	6
Lieu				Albon (26)	480	96,64	2481	115,5	2966	-19	-485	8
Période de retour : T (ans)				30	540	100,73	2586	130,0	3337	-29	-751	9
Coefficient de Montana (T) : a				10,999	600	104,54	2684	144,4	3708	-40	-1024	10
Coefficient de Montana (T) : b				0,648	720	111,46	2862	173,3	4450	-62	-1588	12
H ruisselée (T) = a*D^1-	-h			0,010	840	117,68	3021	202,2	5191	-85	-2170	14
	~				960	123,34	3166	231,1	5933	-108	-2766	16
Volume bassin retention (m3)				827	1080	128,56	3301	260,0	6674	-131	-3374	18
Totalio Bassiii Totoliiisii (iiis)				0 2.	1200	133,42	3425	288,9	7416	-155	-3991	20
					1320	137,97	3542	317,8	8158	-180	-4615	22
					1440	142,26	3652	346,6	8899	-204	-5247	24
Coefficient de Montana						,		0.0,0				
6mn-30mn		Albon (26)										
1987-2019		pour T= 30 ans										
1007 2010	a:	4,561										
	b:	0,377]
	D.	0,0]
30mn-24h		Albon (26)										
1987-2019		pour T= 30 ans]
	a:	10,999]
	b:	0,648										
	υ.	0,0.0										

Prédimensionnement bassin d'infiltration

Permeabilité (coefficient K)		Unité				Observations
Capacité d'absorption						
l .	K mini	m/s	8,89	10 exp	-5	5
	K maxi	m/s	1,21	10 exp	-4	1
	K moyen	m/s		0,00010495		
	K moyen	m/s		0,00010300		essai MATSUO PM5, mesuré à -2,30m
	capacité d'absorption	l/m2/h		370,8		soit 149,26 NGF
						rapport HG mission G1 page 69
Geometrie bassin						bassin type SAUL
	surface d'infiltration	m2		2000		surface fond de bassin, surface parois non prises en compte
	hauteur	m2		0,5		
	volume theorique construit	m3		1000		
	Taux de vide			0,96		
	volume utile construit	m3		960		
	volume necessaire	m3		827		maximum calcul onglets 4 et 5 avec Qf minoré
Debit d'infiltration		l/h		741600		capacité d'absorption * surface d'infiltration
		m3/h		741,60		
	Q inf	l/s		206,00		

marge sur volume 16,0%

coefficient securité minorateur	Q inf minoré retenu pour dimensionnement (I/s)
0,5	103,00

Salaise sur Sanne / Sablons : aménagement

de la ZIP

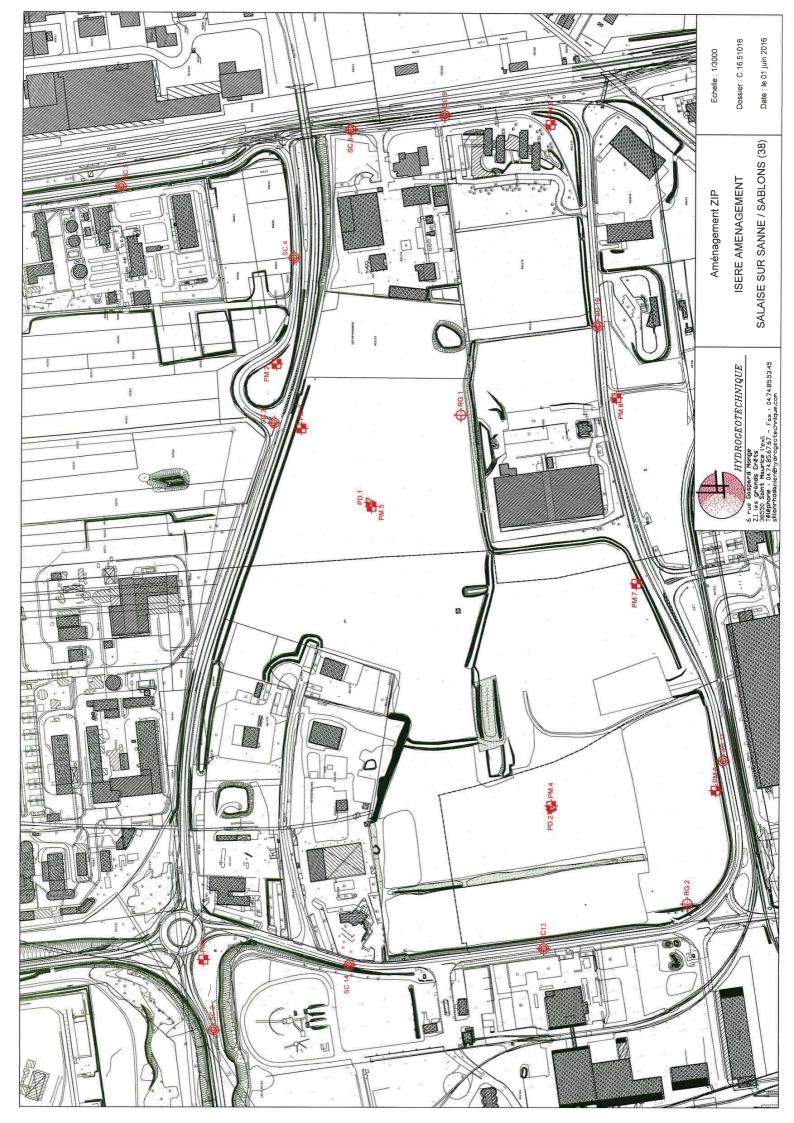
Cote NGF : 151.56

Profondeur : 0,00 - 2,60 m

Machine : Tractopelle

lsère aménagement

Х Υ


1840763.29 4239213.47

1/20

Forage: PM.5

EXGTE 3.16/GTE

1/20		Forage : PM.	J	EXGIE 3.16/GIE
Cote NGF	Profondeur	Lithologie	Venue d'eau	Observations
151,46	0	Limons sableux marron-gris à radicelles		
150,96		Sables légèrement limoneux marron-roux à graviers 0,60 m		
	1-	Sables beiges à rares graviers		Mauvaise tenue des parois de la fouille
	2-			Echantillon laboratoire à 2.00m
				Essai d'eau à 2.30m : k =1,03E-04m/s
148,96		Arrêt, éboulements à répétition 2,60 m		
	3-			nlutzsa.fr
Edition or	4—	ý chác các các các các các các các các cá		Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

ESSAI MATSUO

Client: Isère aménagement

Chantier: Salaise sur Sanne / Sablons: aménagement de la ZIP

Dossier: C.16.51016 Essai n°: 1 - PM.5

Coupe observée :

profondeur	description
en mètres	
0,00 - 0,6	Sables légèrement limoneux marron-roux à graviers
0,60 - 2,60	Sables beiges à rares graviers

Essai d'infiltration d'eau MATSUO à niveau constant :

Dimensions de la tranchée :

profondeur	longueur	largeur	
P en m	L en m	l en m	
2,30	0,60	0,50	

Caractéristiques de l'essai :

Hauteur d'eau	Surface	Débit mesuré (Q)	
à l'équilibre	mouillée		
m	mm2	l/mn	mm3/h
0,15	630000	3,90	234000000

Perméabilité moyenne mesurée

k = Q/S = 371,43 mm/h

k = 1,03E-04 m/s

Incertitudes

sur longueur et largeur de tranchée : 5 cm

sur hauteur d'eau : 0,5 cm

sur débit : 0,01 l/mn

d'où la fourchette de perméabilité :

319,95 < k (mm/h) < 436,47 8,89E-05 < k (m/s) < 1,21E-04