Maître d'Ouvrage:

SOCIÉTÉ DU CRÉMATORIUM DE SAINT-DÉSIR

Construction d'un crématorium Saint-Désir (14)

Notice hydraulique - Crématorium de Saint-Désir

8 rue Croix Chaudron 51 500 SAINT-LEONARD Tel : 09 72 68 10 18

etudes@eska-conseil.fr

SOMMAIRE

LI	STE D	ES C	CARTES, TABLEAUX ET FIGURES	3
1	INT	ROI	DUCTION	4
	1.1		jet de l'étude	
	1.2	Pro	ejet de construction	4
	1.3	Нур	oothèses de travail et exigences réglementaires	5
	1.3	.1	Contexte réglementaire	5
	1.3	.2	Contexte météorologique	6
	1.3	.3	Contexte géologique et hydrogéologique local	7
	1.3	.4	Contexte hydrologique local	7
	1.3	.5	Perméabilité du terrain	8
	1.4	Bas	ssin versant	8
	1.5	Sur	face active du projet	9
	1.6	Ou	vrages de gestion des eaux pluviales	9
	1.7	Cho	oix du débit de fuite	9
	1.8	Нур	oothèses – Calcul du volume de stockage	. 10
2	PRI	NCI	PE DE GESTION DES EAUX PLUVIALES	. 11
	2.1	Pri	ncipe général - Crématorium	. 11
	2.2	Din	nensionnement des ouvrages	. 11
	2.3	Bas	ssin versant intercepté	. 11

LISTE DES CARTES, TABLEAUX ET FIGURES

Figures

	
Figure 1 : Localisation du site (source Geoportail)	4
Figure 2 Extrait du plan de masse - Phase APS	5
Figure 3 Bassin versant intercepté	8
Figure 4 Schéma de principe du bassin de rétention	Erreur ! Signet non défini.
<u>Tableaux</u>	
Tableau 1 : Coefficient de Montana CAEN-CARPIQUET (Source Météo France)	6
Tableau 2 Surfaces caractéristiques du projet	9

Page 3 / 15

1 INTRODUCTION

1.1 OBJET DE L'ÉTUDE

La présente notice a pour but de décrire la gestion des eaux pluviales du projet de construction d'un crématorium. Une partie des eaux pluviales de la voirie d'accès (dont la construction est portée par la Communauté d'Agglomération) devra être gérée sur la parcelle du crématorium.

Le projet, porté par la Société des Crématoriums de France via une délégation de service public, se situe sur une parcelle agricole sur la commune de Saint-Désir. La parcelle est définie comme une prairie permanente depuis de nombreuses années d'après le RPG (registre parcellaire graphique).

La parcelle appartenant à la Communauté d'Agglomération de Lisieux Normandie se situe à la limite avec la commune du Pré-d'Auge, à l'intersection des routes départementales RD613 et RD159.

Le projet se trouve néanmoins en retrait de l'axe routier. Il s'inscrit dans un projet plus global d'aménagement de la communauté d'agglomération (zone d'activité).

Figure 1: Localisation du site (source Geoportail)

1.2 PROJET DE CONSTRUCTION

Le projet prévoit donc la création d'un bâtiment accueillant à la fois le public et l'activité de crémation (en 2 zones distinctes, dans le respect de la règlementation).

Quelques places de stationnement (10) se trouveront sur la parcelle du projet (à savoir qu'un parking est prévu à proximité immédiate).

Des cheminements piéton et de nombreux espaces verts composeront le reste du projet, via notamment une zone dédiée au souvenir des défunts.

Un bassin de stcokage/restitution est prévu pour la gestion des eaux pluviales sur la partie sud-est de la parcelle (point bas), avant le rejet en limite parcellaire dans le cours d'eau.

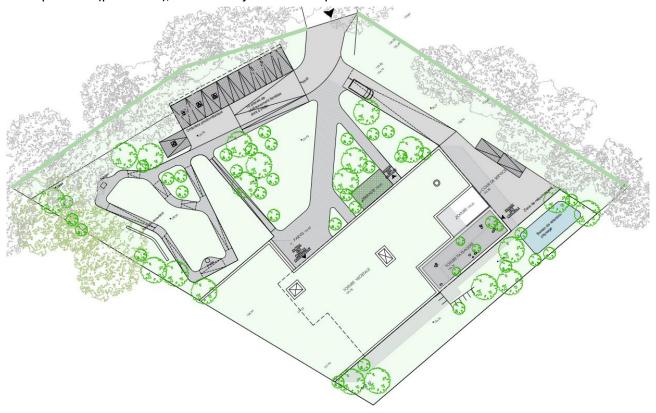


Figure 2 Extrait du plan de masse - Phase APS

1.3 HYPOTHÈSES DE TRAVAIL ET EXIGENCES RÉGLEMENTAIRES

1.3.1 Contexte réglementaire

La Communauté d'Agglomération Lisieux Normandie a lancé une procédure de réalisation d'un PLU intercommunal afin d'uniformiser les règles d'urbanisme sur l'ensemble de son territoire. Le document actuel pour la commune Saint-Désir est le PLUi de Lintercom Lisieux Pays d'Auge Normandie, approuvé en 2019.

Celui-ci, dans la zone UXi (zone urbanisée à vocation économique) où se trouve le projet, autorise les affouillements et exhaussements de sols destinés à la réalisation d'ouvrages de régulation des eaux pluviales ou de traitement des eaux usées. Il ne donne cependant que peu de prescriptions techniques quant à la gestion des eaux pluviales :

« Tout aménagement réalisé sur un terrain ne doit pas faire obstacle au libre écoulement des eaux pluviales et doit garantir leur écoulement dans le réseau collecteur dans le respect des normes de rejet qualitatives et quantitatives adaptées aux caractéristiques du réseau.

Quantitativement

Afin de limiter les apports et le débit de fuite vers le réseau collecteur des eaux pluviales provenant des surfaces imperméabilisées, des techniques alternatives aux réseaux doivent être privilégiées (noues, chaussées réservoirs, fossés drainants, bassins secs...).

Qualitativement

Toute installation industrielle, artisanale ou commerciale non soumise à autorisation ou à déclaration au titre de la législation sur les installations classées et de la Loi sur l'eau, doit être équipée d'un dispositif de traitement des eaux pluviales, adapté à l'importance et à la nature de l'activité et assurant une protection efficace du milieu naturel.

Les eaux issues des aires de stationnement à l'air libre (10 places minimum) doivent subir un traitement de débourbage, déshuilage, avant rejet dans le réseau d'eau pluviale. »

Pour l'aspect quantitatif, le projet propose des revêtements perméables afin de limiter les apports, ainsi qu'un bassin de rétention afin de limiter les débits de rejet.

Pour l'aspect qualitatif, le projet est soumis à déclaration au titre de la Loi sur l'Eau, notamment via la rubrique 2.1.5.0, implicitement mentionnée dans le PLU. Le projet n'est pas assimilé à un usage industriel, commercial ou artisanal. Il n'accueillera aucun véhicule lourd, aucun produit chimique, il ne sera pas un lieu de stockage de matériaux : ses caractéristiques n'induisent pas risque de pollution accidentel ou chronique qui nécessiterait un traitement particulier des eaux pluviales avant rejet.

Des prescriptions ont été formulées par l'Agence Régionale de Santé : le projet se trouve dans le périmètre d'un captage d'eau potable, l'infiltration des eaux pluviales doit être limitée à 10-6 m/s.

Il existe également des prescriptions techniques dans la doctrine de la DDTM du Calvados : celle-ci, récemment mise à jour pour correspondre aux objectifs du SDAGE Seine Normandie, préconise notamment la gestion d'une pluie de retour 30 ans.

Une surverse doit être intégrée pour la gestion de la pluie de retour 100 ans. Dans le cas de rejet en milieu superficiel (comme pour le projet), une cloison siphoïde (équipée d'une vanne d'arrêt) sera installée en amont du rejet. Le débit de fuite sera compris entre 2 et 5L/s/ha et devra permettre la vidange de l'ouvrage de rétention en moins de 48h.

1.3.2 Contexte météorologique

La station météorologique la plus proche disposant de coefficients Montana est situé à l'aéroport de CAEN-CARPIQUET. Ceux-ci ont été déterminés sur la période 1986 – 2021.

Période de	6 min	à 3 h	3 h à 24 h		
retour	а	b	а	b	
5 ans	4,526	0,626	8,478	0,762	
30 ans	7,039	0,618	16,795	0,804	
100 ans	8,812	0,606	24,892	0,827	

Tableau 1 : Coefficient de Montana CAEN-CARPIQUET (Source Météo France)

1.3.3 Contexte géologique et hydrogéologique local

Dans le cadre des études géotechniques réalisées par la société ECR-Environnement, la composition principale des sols a été déterminée :

- Terre végétale ;
- Limon;
- Sable graveleux compacte;
- Argile à silex compacte.

Lors de l'intervention en mai 2022, aucun niveau d'eau n'a pu être mesuré dans les sondages (à une profondeur comprise entre 2,4 m et 4 m)

Selon l'étude géotechnique, ce constat ponctuel n'est pas en accord avec la carte de prédispositions aux risques naturels (établie par la DREAL de Normandie) qui fait état d'une profondeur de remontée de nappe inférieure à 1 m/TN.

1.3.4 Contexte hydrologique local

Le projet se trouve dans le bassin versant du ruisseau « le Cirieux » (FRHR277-I0280600). Avant de rejoindre ce cours d'eau, les eaux de ruissellement sont actuellement collectés par des fossés présents en limite parcellaire du crématorium (cf. ci-après).

1.3.5 Perméabilité du terrain

La perméabilité du terrain n'a pas fait l'objet de mesures : le projet se trouve en zone humide caractérisée (une compensation est prévue sur une parcelle proche – cf. étude d'impact).

L'infiltration ne sera pas favorisée dans le cadre du projet : le rejet sera majoritairement réalisé en milieu superficiel. Une très faible partie des eaux pluviales sera infiltrée sur les zones perméables du projet (espaces verts), le reste sera dirigé vers le bassin de rétention, puis à débit maitrisé vers le fossé.

1.4 BASSIN VERSANT

Deux bassins versants ont été déterminés dans le cadre du projet de crématorium :

- La parcelle du crématorium + la voirie d'accès ;
- Le bassin versant intercepté par celle-ci.

Les eaux pluviales du site seront dirigées gravitairement vers divers avaloirs, puis vers le bassin de rétention, puis vers le fossé existant.

Actuellement, les eaux de ruissellement du bassin versant intercepté rejoignent gravitairement le fossé à l'est du futur crématorium : il est envisagé de créer un nouveau fossé en limite interne de la parcelle du crématorium, afin de diriger ces eaux directement vers le fossé existant. L'objectif consiste à ne pas créer de ruissellement supplémentaire sur le projet pour éviter tout risque de pollution de ces eaux.

Figure 3 Bassin versant intercepté

1.5 SURFACE ACTIVE DU PROJET

La surface active est constituée des voiries, du bâtiment, des espaces verts, les stationnements et de la surface du bassin.

Type de sol	Surface	Coefficient de ruissellement	Surface active
Bâtiment – toiture végétalisée	886 m²	0,4	354 m²
Bâtiment (y.c. parvis)	387 m²	1	387 m²
Voirie	396 m²	0,9	356 m²
Stationnement (type Evergreen)	39 m²	0,4	16 m²
Ombrières photovoltaïques	131 m²	1	131 m²
Cheminement piéton (stabilisé)	432 m²	0,7	302 m²
Bassin de stockage	80 m²	1	80 m²
Espaces verts	2 128 m²	0,15	319 m²
Voie d'accès	315 m²	0,9	284 m²
TOTAL	4 794 m²	0,46	2 229 m²

Tableau 2 Surfaces caractéristiques du projet

Le bassin versant intercepté est estimé à 11 574 m², soit une surface active de 1 736 m².

1.6 OUVRAGES DE GESTION DES EAUX PLUVIALES

Il s'agit de définir les types d'ouvrages (bassin, noue) en charge de la gestion des eaux pluviales, ainsi que leurs caractéristiques (forme, longueur, largeur, profondeur).

Pour rappel, il existe des prescriptions sur la période de retour à considérer (30 ans) et la durée maximale pour la vidange du bassin : ces données permettront de fixer le débit de fuite et le volume de stockage du bassin.

Pour le bassin versant intercepté, il s'agira de calculer le débit de pointe à gérer pour dimensionner le fossé périphérique.

1.7 CHOIX DU DÉBIT DE FUITE

Il est possible d'approcher le débit actuel à l'exutoire, selon les différentes périodes de retour. Pour définir le débit de fuite du bassin, on choisit la période disponible donnant le débit le plus faible (pluie de retour 5 ans). Le bassin versant étant réduit et de forme simple, il est possible de calculer le débit de pointe à l'exutoire via la méthode rationnelle :

$$Qn = C . i_n(Tc) . A / 60$$

Débit de pointe en L/s pour une pluie de fréquence n ans. Qn:

C: Coefficient de ruissellement

i_n: Intensité de la pluie en mm/min pour une pluie de fréquence n ans.

Superficie du projet en m² A :

La parcelle du projet à l'état initial possède les caractéristiques suivantes :

•	Superficie du projet (A)	0,4794 ha
•	Altitude maximum	159,32 m
•	Altitude minimum	152,05 m
•	Chemin hydraulique le plus long (L)	114 m

 Pente moyenne (I) 6.4% = 0.064 m/m

 Coefficient de ruissellement (C) 0,15 (terres agricoles)

Temps de concentration (Tc) $Tc = 0.763 \cdot V(A/I) = 2.13 min$

L'intensité maximale de la pluie de retour 5 ans est définie ainsi :

$$i_n(t) = a_n \cdot t^-b_n$$

intensité de la pluie en mm/min pour une pluie de fréquence n ans. i_n:

 a_n et b_n : coefficients de Montana pour une pluie de fréquence n ans

t: durée de la pluie en minutes

Le débit de pointe obtenu pour une pluie de retour 5 ans est : 34,2 L/s.

En choisissant le maximum autorisé (5 L/s/ha), on obtient une valeur de 2,40 L/s (plus de 10 fois inférieure à la valeur calculée précédemment).

1.8 Hypothèses – Calcul du volume de stockage

La formule donnée dans le Mémento 2017 de l'Astee sert à calculer une hauteur de précipitation :

$$h_n(t) = a_n \times t^{1-bn}$$

Les hypothèses et caractéristiques principales du projet sont rappelées ci-dessous :

Durée de retour de la pluie : 30 ans (100 ans par surverse)

Coefficients Montana associés : cf. paragraphe 1.3.2

Temps de pluie critique : 3 h (cf. explications ci-après)

Rejet autorisé dans le fossé : 2,40 L/s

Surface active: 2 229 m²

2 PRINCIPE DE GESTION DES EAUX PLUVIALES

2.1 PRINCIPE GÉNÉRAL - CRÉMATORIUM

La parcelle présentant des contraintes liées à l'infiltration (zone humide, nappe proche, incluse dans un périmètre de protection de captage), aucune infiltration n'aura lieu au droit du bassin. Le projet présente de nombreuses surfaces perméables afin de limiter les ruissellements (et par conséquent son impact hydraulique sur le cours d'eau).

Un bassin de rétention sera mis en place avec un rejet à débit limité vers le milieu naturel (fossé, puis cours d'eau « le Cirieux »). Celui-ci sera rendu étanche via la mise en place d'un géotextile imperméable, ou en utilisant de l'argile. Les équipements suivants sera installés en aval :

- Une cloison siphoïde;
- Une vanne d'arrêt manoeuvrable ;
- Un limiteur de débit.

Etant donné le faible espace disponible et la topographie du site, le bassin sera divisé en 2 :

- Une partie à ciel ouvert de 50 m³
- Une partie enterré, de type SAUL, de 45 m³.

Une surverse sera installée directement sur le bassin de rétention (by-pass de la cloison). Le plan est disponible en annexe.

2.2 DIMENSIONNEMENT DES OUVRAGES

2 jeux de coefficients Montana sont disponibles pour cette étude : sur des périodes pluvieuses de 6 minutes à 3 heures, et de 3 heures à 24 heures.

Les notes de calcul pour les pluies de retour 30 ans et 100 ans sont disponibles en annexe :

- Le volume critique est atteint au bout de 3 heures ;
- Le volume nécessaire pour stocker une pluie de 30 ans est de 88 m³;
- Le volume critique pour la <u>pluie de 100 ans</u> est de 126 m³. Les rejets directs au milieu naturel via la surverse auront lieu après 1h de pluie (environ 90 m³ à stocker cf. note de calcul) : le bassin remplira donc un rôle de tamponnement et de réduction du débit de pointe dans les fossés et cours d'eau en aval.

Le bassin étanche de stockage/restitution aura donc un volume de 88 m³ minimum.

2.3 BASSIN VERSANT INTERCEPTÉ

La méthode rationnelle (présentée au paragraphe 1.7) sera également utilisée pour estimer le débit de pointe de ce bassin versant.

Le calcul a été réalisé pour 2 périodes de retour :

- 30 ans (PLU): Q30 = 79 L/s 22 m³/h
- 100 ans : Q100 = 101 L/s 28 m³/h

Un fossé périphérique de 20 cm de profondeur sera largement suffisant pour évacuer ces ruissellements.

Il suivra les 2 limites parcellaires sud du projet, avec une connexion de part et d'autre au fossé (cf. plan en annexe).

CRÉATION D'UN CRÉMATORIUM - SAINT-DÉSIR
Gestion des eaux pluviales

Annexe 1 Note de Calcul – Pluie de Retour 30 ans

DIMENSIONNEMENT DU BASSIN DE RETENTION

Coefficient de Montana	а	b	Période	e de retour	30 ans
6 mn à 3 h	6 mn à 3 h 7,039 0,618 Débit de rejet fixé au PLU		PLU	5,00 l/s/ha	
3 h à 24 h	16,795	0,804	Débit de fuite autoris	ée	2,40 l/s
			Surface active		0,22 ha
Durée de la pluie	Intensité de la pluie	Hauteur de la pluie	Volume produit	Volume débit de fuite	Volume à Stocker
6 min	2,33 mm/h	13,96 mm	31 m³	1 m³	30 m³
15 min	1,32 mm/h	19,81 mm	44 m³	2 m³	42 m³
30 min	0,86 mm/h	25,81 mm	58 m³	4 m³	53 m³
45 min	0,67 mm/h	30,13 mm	67 m³	6 m³	61 m³
60 min	0,56 mm/h	33,63 mm	75 m³	9 m³	66 m³
90 min	0,44 mm/h	39,27 mm	88 m³	13 m³	75 m³
120 min	0,37 mm/h	43,83 mm	98 m³	17 m³	80 m³
180 min	0,28 mm/h	51,17 mm	114 m³	26 m³	88 m³
240 min	0,22 mm/h	53,87 mm	120 m³	35 m³	86 m³
360 min	0,16 mm/h	57,93 mm	129 m³	52 m³	77 m³
480 min	0,13 mm/h	61,02 mm	136 m³	69 m³	67 m³
600 min	0,11 mm/h	63,54 mm	142 m³	86 m³	55 m³
720 min	0,09 mm/h	65,68 mm	146 m³	104 m³	43 m³
840 min	0,08 mm/h	67,55 mm	151 m³	121 m³	30 m³
960 min	0,07 mm/h	69,22 mm	154 m³	138 m³	16 m³
1 080 min	0,07 mm/h	70,73 mm	158 m³	155 m³	2 m³
1 200 min	0,06 mm/h	72,10 mm	161 m³	173 m³	
1 320 min	0,06 mm/h	73,37 mm	164 m³	190 m³	
1 440 min	0,05 mm/h	74,56 mm	166 m³	207 m³	
	Volume total	de rétention à mo	ettre en place		88 m³
100 m³		Volum	e à stocker		
80 m³			•		
70 m³					
60 m ³					
50 m ³					
40 m³					
30 m³					
20 m³					
403					
10 m³					

CRÉATION D'UN CRÉMATORIUM - SAINT-DÉSIR
Gestion des eaux pluviales

Annexe 2 Note de calcul — Pluie de retour 100 ans

DIMENSIONNEMENT DU BASSIN DE RETENTION

Coefficient de Montana	а	b	Période	e de retour	100 ans		
6 mn à 3 h	mn à 3 h 8,812 0,606 Débit de rejet fixé au PLU		5,00 l/s/ha				
3 h à 24 h	24,892	0,827	Débit de fuite autoris	ée	2,40 l/s		
			Surface active		0,22 ha		
Durée de la pluie	Intensité de la pluie	Hauteur de la pluie	Volume produit	Volume débit de fuite	Volume à Stocker		
6 min	2,98 mm/h	17,85 mm	40 m³	1 m³	39 m³		
15 min	1,71 mm/h	25,61 mm	57 m³	2 m³	55 m³		
30 min	1,12 mm/h	33,66 mm	75 m³	4 m³	71 m³		
45 min	0,88 mm/h	39,49 mm	88 m³	6 m³	82 m³		
60 min	0,74 mm/h	44,22 mm	99 m³	9 m³	90 m³		
90 min	0,58 mm/h	51,89 mm	116 m³	13 m³	103 m³		
120 min	0,48 mm/h	58,11 mm	130 m³	17 m³	112 m³		
180 min	0,38 mm/h	68,18 mm	152 m³	26 m³	126 m³		
240 min	0,30 mm/h	71,30 mm	159 m³	35 m³	124 m³		
360 min	0,21 mm/h	75,97 mm	169 m³	52 m³	118 m³		
480 min	0,17 mm/h	79,48 mm	177 m³	69 m³	108 m³		
600 min	0,14 mm/h	82,33 mm	184 m³	86 m³	97 m³		
720 min	0,12 mm/h	84,75 mm	189 m³	104 m³	85 m³		
840 min	0,10 mm/h	86,85 mm	194 m³	121 m³	73 m³		
960 min	0,09 mm/h	88,71 mm	198 m³	138 m³	60 m³		
1 080 min	0,08 mm/h	90,39 mm	201 m³	155 m³	46 m³		
1 200 min	0,08 mm/h	91,92 mm	205 m³	173 m³	32 m³		
1 320 min	0,07 mm/h	93,34 mm	208 m³	190 m³	18 m³		
1 440 min	0,07 mm/h	94,64 mm de rétention à me	211 m³	207 m ³	4 m³ 126 m³		
Volume à stocker 140 m³ 120 m³ 100 m³							
80 m ³ 60 m ³ 40 m ³							
0 m³	00 min 400 m	nin 600 min	800 min	1 000 min 1 200 min	1 400 min		